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Introduction
Nonnegative matrix factorization (NMF):
Given a nonnegative matrix X ∈ Rm×n (all en-
tries are nonnegative) and a target rank r that
0 < r ≪ m. We want to find a matrix factoriza-
tion model

X ≈ WH,

where W ∈ Rm×r and H ∈ Rr×n are nonnegative.

Min-Vol Rank-Deficient NMF
Minimum-Volume Rank-Deficient NMF: In
[3], Leplat et al. proposed the optimization prob-
lem for NMF

min
W,H

∥X−WH∥2F + λ log det(WTW + δI)

s.t. (W,H) ∈ S

Notation:

• S = {θθθ = (W,H)|W,H ≥ 0 and
1TH(:, j) ≤ 1,∀j} (Constraint set)

• H(:, j) is the jth column of matrix H

Motivation
In the paper [3], Leplat et al. briefly choose the
tuning parameter λ as

λ = λ̃
∥X−W0H0∥2F

log det(WT
0W0 + δI)

such that

• (W0,H0) is the initialization for (W,H)

• λ̃ is between 1 and 10−310−310−3 depends on the
noise level

Question: What is the best λ̃ for each noise level?

Experiment with λ

• True W⋆ =


1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1


• True H⋆: A stochastic 4 × 500 matrix gener-

ated by Dirichlet distribution

• True X⋆ = W⋆H⋆

• Noise level σ = 10−i for i ∈ {1, · · · , 14}, Sim-
ulated matrix X = X⋆ + σN (N is random,
nij ∈ [0, 1])

• rel-RMSE(X) = ∥X⋆ − X̂∥F/∥X⋆∥F

• rel-RMSE(W) = ∥W⋆ − Ŵ∥F/∥W⋆∥F

For each noise level σ, use multiple λ̃ between 1.5
and 10−11, choose the best results

(a) Best λ̃ (b) Smallest errors

Figure 1: Best results with different noise levels

With the best λ̃, the errors cannot get under 10−810−810−8

Majorization-Minimization Variant for Min-Vol
New problem (inspired by Square-Root Lasso)

min
W,H

f(W,H) :=
√
∥X−WH∥2F + λvol(W)

s.t. (W,H) ∈ S

Modified problem ("smoothen" square-root term)

min
W,H

fε(W,H) :=
√
∥X−WH∥2F + ε+ λvol(W)

s.t. (W,H) ∈ S

where vol(W) = log det(WTW + δI)

Choose a surrogate function g(θθθ|θθθk) for fε(θθθ) s.t.

fε(θθθ) ≤ g(θθθ|θθθk), for all θθθ ∈ S.
fε(θθθk) = g(θθθk|θθθk)

Square-root Min-Vol

Algorithm 1 Square-Root Min-Vol NMF
Input: X ∈ Rm×n

+ , target rank r, λ, δ, ε.
Output: W ∈ Rm×r

+ ,H ∈ Rr×n
+ in S

1: (W1,H1) = SNPA(X,r)
2: λ1 = λ
3: for k = 1, . . . do
4: (Wk+1,Hk+1)=MinVol(X,r,[Wk,Hk,λk,δ])
5: λk+1 ← (2

√
∥X−Wk+1Hk+1∥2F + ε)λ

6: end for

SNPA: successive nonnegative projection algo-
rithm [1]

Results
With the same experiment set-up

Figure 2: For Square-Root Min-Vol, both errors
are much smaller, and rel-RMSE(X) = 10−1410−1410−14 !

Applications
Applications: Hyperspectral unmixing (HU),
topic modeling, representation learning.
Face Representation Learning:

Figure 3: NMF for Representation Learning [2].
In matrix X, each column represents a face image,
while in matrix W, each column represents a facial
feature (learned basis).
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