

Introduction

Nonnegative matrix factorization (NMF): Given a nonnegative matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ (all entries are nonnegative) and a target rank r that $0 < r \ll m$. We want to find a matrix factorization model

$\mathbf{X} \approx \mathbf{W}\mathbf{H},$

where $\mathbf{W} \in \mathbb{R}^{m \times r}$ and $\mathbf{H} \in \mathbb{R}^{r \times n}$ are nonnegative.

Min-Vol Rank-Deficient NMF

Minimum-Volume Rank-Deficient NMF: In [3], Leplat et al. proposed the optimization problem for NMF

$$\min_{\mathbf{W},\mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2} + \lambda \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I})$$

s.t. $(\mathbf{W}, \mathbf{H}) \in \mathcal{S}$

Notation:

•
$$S = \{ \boldsymbol{\theta} = (\mathbf{W}, \mathbf{H}) | \mathbf{W}, \mathbf{H} \ge 0 \text{ and}$$

 $\mathbf{1}^{\mathsf{T}} \mathbf{H}(:, j) \le 1, \forall j \}$ (Constraint set)

• $\mathbf{H}(:, j)$ is the *j*th column of matrix \mathbf{H}

Motivation

In the paper [3], Leplat et al. briefly choose the tuning parameter λ as

$$\lambda = \tilde{\lambda} \frac{\|\mathbf{X} - \mathbf{W}_0 \mathbf{H}_0\|_{\mathrm{F}}^2}{\log \det(\mathbf{W}_0^{\mathsf{T}} \mathbf{W}_0 + \delta \mathbf{I})}$$

such that

- $(\mathbf{W}_0, \mathbf{H}_0)$ is the initialization for (\mathbf{W}, \mathbf{H})
- λ is between 1 and 10⁻³ depends on the noise level

Question: What is the best λ for each noise level?

Towards Tuning-Free Minimum-Volume Nonnegative Matrix Factorization

Duc Toan Nguyen, Texas Christian University, Fort Worth, Texas Advisor: Dr. Eric C. Chi, Department of Statistics, Rice University, Houston, Texas

Experiment with λ

- True $\mathbf{W}^{\star} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$
- True \mathbf{H}^* : A stochastic 4×500 matrix generated by Dirichlet distribution

• True
$$\mathbf{X}^{\star} = \mathbf{W}^{\star}\mathbf{H}^{\star}$$

• Noise level $\sigma = 10^{-i}$ for $i \in \{1, \dots, 14\}$, Simulated matrix $\mathbf{X} = \mathbf{X}^* + \sigma \mathbf{N}$ (N is random, $n_{ij} \in [0,1])$

• rel-RMSE
$$(\mathbf{X}) = \|\mathbf{X}^{\star} - \hat{\mathbf{X}}\|_{\mathrm{F}} / \|\mathbf{X}^{\star}\|_{\mathrm{F}}$$
 F

• rel-RMSE $(\mathbf{W}) = \|\mathbf{W}^{\star} - \hat{\mathbf{W}}\|_{\mathrm{F}} / \|\mathbf{W}^{\star}\|_{\mathrm{F}}$

Majorization-Minimization Variant for Min-Vol

$$\min_{\mathbf{W},\mathbf{H}} \quad f(\mathbf{W},\mathbf{H}) \coloneqq \sqrt{\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathrm{F}}^2} + \lambda \operatorname{vol}(\mathbf{W})$$

s.t.
$$(\mathbf{W}, \mathbf{H}) \in \mathcal{S}$$

Modified problem ("smoothen" square-root term)

$$\min_{\mathbf{W},\mathbf{H}} \quad \frac{f_{\varepsilon}(\mathbf{W},\mathbf{H}) \coloneqq \sqrt{\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathrm{F}}^2 + \varepsilon} + \lambda \operatorname{vol}(\mathbf{W}) \quad \text{Choos}$$
s.t. $(\mathbf{W},\mathbf{H}) \in \mathcal{S}$

where $\operatorname{vol}(\mathbf{W}) = \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I})$

Square-root Min-Vol

Algorithm 1 Square-Root Min-Vol NMF **Input**: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, target rank $r, \lambda, \delta, \varepsilon$. **Output**: $\mathbf{W} \in \mathbb{R}^{m \times r}_+, \mathbf{H} \in \mathbb{R}^{r \times n}_+$ in \mathcal{S} 1: $(\mathbf{W}_1, \mathbf{H}_1) = \mathbf{SNPA}(\mathbf{X}, r)$ 2: $\lambda_1 = \lambda$ 3: for k = 1, ... do $(\mathbf{W}_{k+1},\mathbf{H}_{k+1}) = \mathbf{MinVol}(\mathbf{X},r,[\mathbf{W}_k,\mathbf{H}_k,\lambda_k,\delta])$ $\lambda_{k+1} \leftarrow (2\sqrt{\|\mathbf{X} - \mathbf{W}_{k+1}\mathbf{H}_{k+1}\|_{\mathrm{F}}^2} + \varepsilon)\lambda$ 5:6: end for

SNPA: successive nonnegative projection algorithm [1]

With the best $\tilde{\lambda}$, the errors cannot get under 10⁻⁸

se a surrogate function $g(\boldsymbol{\theta}|\boldsymbol{\theta}_k)$ for $f_{\varepsilon}(\boldsymbol{\theta})$ s.t.

Results

Figure 3: NMF for Representation Learning [2]. In matrix \mathbf{X} , each column represents a face image, while in matrix \mathbf{W} , each column represents a facial feature (learned basis).

Conclusion & Acknowledgement

Conclusion:

Acknowledgement: This work was conducted in the 2023 REU STAT-DATASCI program at the Department of Statistics at Rice University and partially funded by a grant from the National Institute of General Medical Sciences (R01GM135928: EC).

2

3

- Nicolas

Applications

Applications: Hyperspectral unmixing (HU), topic modeling, representation learning. Face Representation Learning:

• The efficiency of **MinVol** algorithm depends on the initial λ choice

• The **MinVol** algorithm can be improved by the Square-Root Min-Vol NMF

References

[1] Nicolas Gillis. "Successive nonnegative projection algorithm for robust nonnegative blind source separation". In: SIAM Journal on Imaging Sciences 7.2 (2014), pp. 1420–1450.

Nicolas Gillis. "The why and how of nonnegative matrix factorization". In: Regularization, optimization, kernels, and support vector ma*chines* 12.257 (2014), pp. 257–291.

Valentin Leplat, Andersen M.S. Ang, and "Minimum-volume Rank-Gillis. deficient Nonnegative Matrix Factorizations". In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019, pp. 3402–3406.