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Nonnegative Matrix Factorization

Nonnegative matrix

If all entries of a matrix X € R™*" are nonnegative, we call matrix X is
nonnegative and denote X > 0.
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Nonnegative Matrix Factorization

Nonnegative matrix

If all entries of a matrix X € R™*" are nonnegative, we call matrix X is
nonnegative and denote X > 0.

Nonnegative Matrix Factorization (NMF)

Given a nonnegative matrix X € R™*" and a target rank r that
0 < r < m. We want to find a matrix factorization model

X ~ WH,

where W € R™*" and H € R"™*" are nonnegative.
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NMF Applications

Applications: Hyperspectral unmixing (HU), topic modeling,
representation learning.
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NMF Applications

Applications: Hyperspectral unmixing (HU), topic modeling,
representation learning.
Face Representation Learning:

X)) o~ W(:, k) H(k, j) = WH(.J)
e’ o N e’ N S
jth facial image facial features importance of features approximation
i el = T in jth image of jth image
"b - -
= - 4
- 4
- ' ] L
- o™
sl bk e
- b = oy

- d .

Figure: NMF for Representation Learning [3, 5]. In matrix X, each column

represents a face image, while in matrix W, each column represents a facial
feature (learned basis ).
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Minimum-Volume Rank-Deficient NMF

In [6], Leplat et al. proposed the optimization problem for NMF
MinVol NMF problem

min [|X — WH||2 4 X log det(WTW + 4l)

)

st. (W,H)eS

Notation:
¢ S=1{6=(W,H)|W,H>0and 1TH(;,j) < 1,V,} (Constraint set)
® H(:,j) is the jth column of matrix H
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Minimum-Volume Rank-Deficient NMF

In [6], Leplat et al. proposed the optimization problem for NMF
MinVol NMF problem

min [|X — WH||2 4 X log det(WTW + 4l)

)

st. (W,H)eS

Notation:
¢ S=1{6=(W,H)|W,H>0and 1TH(;,j) < 1,V,} (Constraint set)
® H(:,j) is the jth column of matrix H

Note: The minimum volume (vol(W) = log det(WTW + §1)) condition is
necessary criteria for a “unique” solution, or the identifiability of NMF
(Craig's belief [2]).
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In the paper [6], Leplat et al. briefly choose the tuning parameter \ as

_« X —WgHg||3
log det(W{ W + 4l)
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In the paper [6], Leplat et al. briefly choose the tuning parameter \ as

_« X —WgHg||3
log det(W{ W + 4l)

such that
® (Wo, Hp) is the initialization for (W, H)
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In the paper [6], Leplat et al. briefly choose the tuning parameter \ as

_« X —WgHg||3
log det(W{ W + 4l)

such that
® (Wo, Hp) is the initialization for (W, H)

e X is between 1 and 10~3 depends on the noise level
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In the paper [6], Leplat et al. briefly choose the tuning parameter \ as

s X —WoHo|?
log det(W{ W + 4l)

such that
® (Wo, Hp) is the initialization for (W, H)

¢ X is between 1 and 10~3 depends on the noise level

Question: What is the best \ for each noise level?
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Experiment Set-up

Set-up:
1100
0 011
® True W* = 01 1 0
1 001
® True H*: A stochastic 4 x 500 matrix generated by Dirichlet
distribution.

® True X* = W*H*
* Noise level ¢ = 10~/ for j € {1,--- ,14}
¢ Simulated matrix X = X* + oN (N is random, n;; € [0,1])

Measurements:
* rel-RMSE(X) = || X* — X||r/|IX* [
e rel-RMSE(W) = [|W* — WI[e/||W* ||
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Experiment process

For each noise level o

@ Run algorithm with multiple A between 1.5 and 10711
® Choose the best results:
® smallest re1-RMSE(X)
smallest re1-RMSE(W)
best A for re1-RMSE(X) (Best Ax)
best A for re1-RMSE(W) (Best Ay)
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(b) Smallest errors

Figure: Best results corresponding to different noise levels

Observation: Even with the best )\, the errors cannot get under 10~8
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Motivation

Fact: The machine precision (computer numerical noise) ~ 10714
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Fact: The machine precision (computer numerical noise) ~ 10714

Question: Is there a way to improve the MinVol?
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Modified problem

Original problem:

min [|X — WH||2 4 X log det(WTW + 4l)

)

st. (W,H)eS
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Modified problem

Original problem:

min [|X — WH||2 4 X log det(WTW + 4l)

)

st. (W,H)eS

New optimization problem (inspired by Square-Root Lasso)

min (W, H) = \/IX — WH|2 + X log det(WTW + 4l)

)

st. (W,H)eS
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Modified problem

Original problem:
min [|X — WH||2 4 X log det(WTW + 4l)

)

st. (W,H)eS

New optimization problem (inspired by Square-Root Lasso)

min  f(W,H) = \/IX — WH|2 + X log det(WTW + 4l)

st. (W,H)eS

Modified problem ("smoothen” square-root term)

min  £(W,H) = VX~ WHI2 + & + Alog det(WTW + 1)

st. (W,H)eS
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MM algorithm idea

Choose a surrogate function g(6|0y) for -(8) such that

-(0) < g(0|0x), for all 6 € S. (3)
fe(0k) = g(0x|0x) (4)
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MM algorithm idea

Choose a surrogate function g(6|0y) for -(8) such that

-(0) < g(0|0x), for all 6 € S. (3)
fe(0k) = g(0x|0x) (4)

Ideal algorithm map (8x — Ox41):

(W1, Hiy1) = argming (W, H)|[(W,, Hy)) (5)
(W,H)eS
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MM algorithm idea

Choose a surrogate function g(6|0y) for -(8) such that

-(0) < g(0|0x), for all 6 € S. (3)
fe(0k) = g(0x|0x) (4)

Ideal algorithm map (8x — Ox41):

(W1, Hiy1) = argming (W, H)|[(W,, Hy)) (5)
(W,H)eS

From (3), (4), and (5),

fo(Ok+1) < 8(0k4110k) < g(0k|0k) = £(Ok).
(3) (5) (4)
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Surrogate function

Surrogate function: (Use first-order Taylor approximation)

B((W. H) (Wi M) =77+ 5

+ A(log det(Qx) + Tr(Q L (WTW +61) — Qy)))

(IX = WHI[E + & — i)

for
o =X = WiH[f +¢
e Qi = W-/[Wk + 6l.
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Surrogate function

Surrogate function: (Use first-order Taylor approximation)

g((W,H)|(W, Hy)) =v/rc +

for

1
NG
+ A(log det(Qx) + Tr(Q, ' (WTW +61) — Qy)))

(IX = WHI[E + & — i)

o =X = WiH[f +¢
e Qi = W-/[Wk + 6l.

Simplified algorithm map

(Wk+17 Hk+1) =

for Ak = 2,/nicA

argming((W, H)|(W, Hy))

(W,H)eS

arg min||X — WHI|2 + )\, log det(WTW + §1)(x)
(W,H)eS
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Simplified algorithm map:

(Wis1, Hiy1) = argmin||X — WHI|2 + Ay log det(WTW + §1)(%)
W.H)eS

— Use the MinVol algorithm (Leplat et al. [6]) to solve (x).
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Simplified algorithm map:

(Wis1, Hiy1) = argmin||X — WHI|2 + Ay log det(WTW + §1)(%)
(W,H)eS

— Use the MinVol algorithm (Leplat et al. [6]) to solve (x).

Also,

® = ||X — WH||2 + ¢ approximates noise level at iteration k [1]
® The update A\ = 2,/r, A follows the noise level.
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Square-Root Min-Vol NMF

Algorithm Square-Root Min-Vol NMF

Input: X € RT*" target rank r, X, 9, €.
Output: W e RT*" HeR*"in S

: (W1,H1) = SNPA(X,r)
CAL=A
:for k=1,...do

(Wii1,His1) = MinVol(X,r,[W,, Hy, \x,0])
Mest 4 (24/1X = Wi 1Hicp 2 + )\
end for

MinVol: minimum-volume algorithm (Leplat et al.) [6]
SNPA: successive nonnegative projection algorithm [4]
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Experiment Set-up

Set-up: (Similar to last experiment)

1100
0 011
*x
® True W* = 0110
1 001
® True H*: A stochastic 4 x 500 matrix generated by Dirichlet
distribution.

® True X* = W*H*

® Noise level o = 107 for j € {1,--- ,14}

¢ Simulated matrix X = X* + oN (N is random, n;; € [0,1])
e c=10"8

Measurements:
e rel-RMSE(X) = ||X* — X||¢/[X*||¢
* rel-RMSE(W) = ||W* — W||g/||W*||r
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Result 1

® Use the same list of initial A's as last experiment

Errors/Noise levels(o)
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(a) Errors by MinVol
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(b) Errors by Square-Root Min-Vol

Figure: Smallest errors corresponding to different noise levels by two algorithms
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Result 1

® Use the same list of initial A's as last experiment

. Errors/Noise levels(o) Errors/Noise levels(o)
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(a) Errors by MinVol (b) Errors by Square-Root Min-Vol

Figure: Smallest errors corresponding to different noise levels by two algorithms

Observation: For Square-Root Min-Vol, both errors are much smaller,
and rel-RMSE(X) = 1014 |
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Result 2

® For Square-Root Min-Vol, if use only A = 0.5 for all noise levels

Errors/Noise levels(o)
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Figure: Smallest errors corresponding to different noise levels by two algorithms
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Result 2

® For Square-Root Min-Vol, if use only A = 0.5 for all noise levels

Errors/Noise levels(o)
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(a) Errors by MinVol (b) Errors by Square-Root Min-Vol

Figure: Smallest errors corresponding to different noise levels by two algorithms

Observation: For Square-root Min-Vol, rel-RMSE(W) is much
improved to 107!
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Convergence Theory

Proposition 3.2. (Convergence Theory of Square-Root Min-Vol NMF)

The limit points of the iterate sequence produced by Square-Root
Min-Vol NMF are first-order stationary points of the problem (2).
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Convergence Theory

Proposition 3.2. (Convergence Theory of Square-Root Min-Vol NMF)

The limit points of the iterate sequence produced by Square-Root
Min-Vol NMF are first-order stationary points of the problem (2).

Process:

@ Show that all limits points of Square-Root Min-Vol NMF algorithm
are fixed points of the algorithm map based on Meyer’'s Monotone
Convergence Theorem.
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Convergence Theory

Proposition 3.2. (Convergence Theory of Square-Root Min-Vol NMF)

The limit points of the iterate sequence produced by Square-Root
Min-Vol NMF are first-order stationary points of the problem (2).

Process:

@ Show that all limits points of Square-Root Min-Vol NMF algorithm
are fixed points of the algorithm map based on Meyer’'s Monotone
Convergence Theorem.

® Show that all fixed points of the algorithm map are first-order
stationary points of the optimization problem (2).
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Conclusions

Conclusions:
® The efficiency of MinVol algorithm depends on the initial A\ choice

® The MinVol algorithm can be improved by the Square-Root
Min-Vol NMF
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Conclusions

Conclusions:
® The efficiency of MinVol algorithm depends on the initial A\ choice

® The MinVol algorithm can be improved by the Square-Root
Min-Vol NMF

Open questions:
® Under what conditions is the square-root min-vol NMF provably
guaranteed to be tuning-free?
® Can we design faster algorithms for solving the square-root min-vol
NMF problem?
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THANK YOU!
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