Towards Tuning-Free Minimum-Volume Nonnegative Matrix Factorization

Duc Toan Nguyen¹ Eric C. Chi²

¹Department of Mathematics, Texas Christian University, Fort Worth, TX

²Department of Statistics, Rice University, Houston, TX

Siam. International Conference on Data Mining

1 Background & Motivation

Nonnegative Matrix Factorization (NMF) and its application Minimum-Volume Rank-Deficient NMF

Experiment with tuning parameter Experiment and Observations

③ Majorization-Minimization (MM) method

Modified problem MM idea Square-Root Min-Vol NMF algorithm Convergence Theory

4 Conclusions

6 Acknowledgement

1 Background & Motivation

Nonnegative Matrix Factorization (NMF) and its application Minimum-Volume Rank-Deficient NMF

Experiment with tuning parameter Experiment and Observations

S Majorization-Minimization (MM) method

Modified problem MM idea Square-Root Min-Vol NMF algorithm Convergence Theory

Occurrent Conclusions

6 Acknowledgement

Nonnegative matrix

If all entries of a matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ are nonnegative, we call matrix \mathbf{X} is nonnegative and denote $\mathbf{X} \ge 0$.

Nonnegative matrix

If all entries of a matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ are nonnegative, we call matrix \mathbf{X} is nonnegative and denote $\mathbf{X} \ge 0$.

Nonnegative Matrix Factorization (NMF)

Given a nonnegative matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ and a target rank r that $0 < r \ll m$. We want to find a matrix factorization model

$$\mathbf{X} \approx \mathbf{W}\mathbf{H},$$

where $\mathbf{W} \in \mathbb{R}^{m \times r}$ and $\mathbf{H} \in \mathbb{R}^{r \times n}$ are nonnegative.

NMF Applications

Applications: Hyperspectral unmixing (HU), topic modeling, representation learning.

< A > < E

NMF Applications

j

Applications: Hyperspectral unmixing (HU), topic modeling, representation learning.

Face Representation Learning:

$$\underbrace{X(:,j)}_{\text{th facial image}} \approx \sum_{k=1}^{r} \underbrace{W(:,k)}_{\text{facial features}} \qquad \underbrace{H(k,j)}_{\text{importance of features}} = \underbrace{WH(:,j)}_{\text{approximation}}$$

Figure: NMF for Representation Learning [3, 5]. In matrix X, each column represents a face image, while in matrix W, each column represents a facial feature (learned basis).

- - -

Minimum-Volume Rank-Deficient NMF

In [6], Leplat et al. proposed the optimization problem for NMF

 $\begin{array}{ll} \mbox{MinVol NMF problem} \\ & \mbox{min}_{\mathbf{W},\mathbf{H}} & \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^{2} + \lambda \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I}) \\ & \mbox{s.t.} & (\mathbf{W},\mathbf{H}) \in \mathcal{S} \end{array}$

Notation:

- $S = \{ \boldsymbol{\theta} = (\mathbf{W}, \mathbf{H}) | \mathbf{W}, \mathbf{H} \ge 0 \text{ and } \mathbf{1}^{\mathsf{T}} \mathbf{H}(:, j) \le 1, \forall j \}$ (Constraint set)
- **H**(:, *j*) is the *j*th column of matrix **H**

6/33

SDM24

Minimum-Volume Rank-Deficient NMF

In [6], Leplat et al. proposed the optimization problem for NMF

MinVol NMF problem

$$\begin{split} \min_{\mathbf{W},\mathbf{H}} & \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^2 + \lambda \log \det(\mathbf{W}^\mathsf{T}\mathbf{W} + \delta \mathbf{I}) \\ \text{s.t.} & (\mathbf{W},\mathbf{H}) \in \mathcal{S} \end{split}$$

Notation:

•
$$S = \{ \boldsymbol{\theta} = (\mathbf{W}, \mathbf{H}) | \mathbf{W}, \mathbf{H} \ge 0 \text{ and } \mathbf{1}^{\mathsf{T}} \mathbf{H}(:, j) \le 1, \forall j \}$$
 (Constraint set)

• **H**(:, *j*) is the *j*th column of matrix **H**

Note: The minimum volume $(vol(\mathbf{W}) = log det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I}))$ condition is necessary criteria for a "unique" solution, or the identifiability of NMF (*Craig's belief* [2]).

$$\lambda = \tilde{\lambda} \frac{\|\mathbf{X} - \mathbf{W}_{0}\mathbf{H}_{0}\|_{\mathsf{F}}^{2}}{\log \det(\mathbf{W}_{0}^{\mathsf{T}}\mathbf{W}_{0} + \delta \mathbf{I})}$$

< A

臣

$$\lambda = \tilde{\lambda} \frac{\|\mathbf{X} - \mathbf{W}_{0}\mathbf{H}_{0}\|_{\mathsf{F}}^{2}}{\log \det(\mathbf{W}_{0}^{\mathsf{T}}\mathbf{W}_{0} + \delta \mathbf{I})}$$

such that

• $(\mathbf{W}_0,\mathbf{H}_0)$ is the initialization for (\mathbf{W},\mathbf{H})

$$\lambda = \tilde{\lambda} \frac{\|\mathbf{X} - \mathbf{W}_{0}\mathbf{H}_{0}\|_{\mathsf{F}}^{2}}{\log \det(\mathbf{W}_{0}^{\mathsf{T}}\mathbf{W}_{0} + \delta \mathbf{I})}$$

such that

- $(\mathbf{W}_0, \mathbf{H}_0)$ is the initialization for (\mathbf{W}, \mathbf{H})
- $\tilde{\lambda}$ is between 1 and 10⁻³ depends on the noise level

$$\lambda = \tilde{\lambda} \frac{\|\mathbf{X} - \mathbf{W}_{0}\mathbf{H}_{0}\|_{\mathsf{F}}^{2}}{\log \det(\mathbf{W}_{0}^{\mathsf{T}}\mathbf{W}_{0} + \delta\mathbf{I})}$$

such that

- $(\mathbf{W}_0,\mathbf{H}_0)$ is the initialization for (\mathbf{W},\mathbf{H})
- $\tilde{\lambda}$ is between 1 and 10⁻³ depends on the noise level

Question: What is the best $\tilde{\lambda}$ for each noise level?

Background & Motivation

Nonnegative Matrix Factorization (NMF) and its application Minimum-Volume Rank-Deficient NMF

Experiment with tuning parameter Experiment and Observations

Majorization-Minimization (MM) method

Modified problem MM idea Square-Root Min-Vol NMF algorithm Convergence Theory

Occusion

6 Acknowledgement

Experiment Set-up

Set-up:

• True
$$\mathbf{W}^{\star} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

- True H*: A stochastic 4 × 500 matrix generated by Dirichlet distribution.
- True X^{*} = W^{*}H^{*}
- Noise level $\sigma = 10^{-i}$ for $i \in \{1, \cdots, 14\}$
- Simulated matrix $\mathbf{X} = \mathbf{X}^{\star} + \sigma \mathbf{N}$ (**N** is random, $n_{ij} \in [0, 1]$)

Measurements:

- rel-RMSE(\mathbf{X}) = $\|\mathbf{X}^{\star} \hat{\mathbf{X}}\|_{\mathsf{F}} / \|\mathbf{X}^{\star}\|_{\mathsf{F}}$
- rel-RMSE(W) = $\|\mathbf{W}^{\star} \hat{\mathbf{W}}\|_{\mathsf{F}} / \|\mathbf{W}^{\star}\|_{\mathsf{F}}$

9/33

SDM24

For each noise level σ

- **()** Run algorithm with multiple $\tilde{\lambda}$ between 1.5 and 10^{-11}
- Ochoose the best results:
 - smallest rel-RMSE(X)
 - smallest rel-RMSE(W)
 - best $\tilde{\lambda}$ for rel-RMSE(**X**) (Best $\tilde{\lambda}_X$)
 - best $\tilde{\lambda}$ for rel-RMSE(**W**) (Best $\tilde{\lambda}_W$)

Figure: Best results corresponding to different noise levels

Observation: Even with the best $\tilde{\lambda}$, the errors cannot get **under 10⁻⁸**.

Duc Toan Nguyen, Eric C. Chi

Towards Tuning-Free Min-Vol NMF

SDM24

Fact: The machine precision (computer numerical noise) $\approx 10^{-14}$

Image: A matrix and a matrix

臣

Fact: The machine precision (computer numerical noise) $\approx 10^{-14}$

Question: Is there a way to improve the MinVol?

Background & Motivation

Nonnegative Matrix Factorization (NMF) and its application Minimum-Volume Rank-Deficient NMF

Experiment with tuning parameter Experiment and Observations

S Majorization-Minimization (MM) method

Modified problem MM idea Square-Root Min-Vol NMF algorithm Convergence Theory

Occurrent Conclusions

6 Acknowledgement

Modified problem

Original problem:

$$\begin{split} \min_{\mathbf{W},\mathbf{H}} & \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^{2} + \lambda \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I}) \\ \text{s.t.} & (\mathbf{W},\mathbf{H}) \in \mathcal{S} \end{split}$$

SDM24

イロト 不得下 イヨト イヨト

E

Modified problem

Original problem:

$$\begin{split} \min_{\mathbf{W},\mathbf{H}} & \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^{2} + \lambda \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I}) \\ \text{s.t.} & (\mathbf{W},\mathbf{H}) \in \mathcal{S} \end{split}$$

New optimization problem (inspired by Square-Root Lasso)

$$\begin{array}{ll} \min_{\mathbf{W},\mathbf{H}} & f(\mathbf{W},\mathbf{H}) \coloneqq \sqrt{\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^2} + \lambda \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I}) \\ \text{s.t.} & (\mathbf{W},\mathbf{H}) \in \mathcal{S} \end{array}$$
(1)

14 / 33

Modified problem

Original problem:

$$\begin{split} \min_{\mathbf{W},\mathbf{H}} & \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^{2} + \lambda \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I}) \\ \text{s.t.} & (\mathbf{W},\mathbf{H}) \in \mathcal{S} \end{split}$$

New optimization problem (inspired by Square-Root Lasso)

$$\begin{split} \min_{\mathbf{W},\mathbf{H}} & f(\mathbf{W},\mathbf{H}) \coloneqq \sqrt{\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^2} + \lambda \log \det(\mathbf{W}^\mathsf{T}\mathbf{W} + \delta \mathbf{I}) \\ \text{s.t.} & (\mathbf{W},\mathbf{H}) \in \mathcal{S} \end{split}$$
 (1)

Modified problem ("smoothen" square-root term)

$$\min_{\mathbf{W},\mathbf{H}} \quad f_{\varepsilon}(\mathbf{W},\mathbf{H}) \coloneqq \sqrt{\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^{2} + \varepsilon} + \lambda \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I})$$
s.t. $(\mathbf{W},\mathbf{H}) \in \mathcal{S}$

$$(2)$$

Duc Toan Nguyen, Eric C. Chi

Towards Tuning-Free Min-Vol NMF

SDM24

14 / 33

Choose a surrogate function $g(\theta|\theta_k)$ for $f_{\varepsilon}(\theta)$ such that

$$f_{\varepsilon}(\boldsymbol{\theta}) \leq g(\boldsymbol{\theta}|\boldsymbol{\theta}_{k}), \text{ for all } \boldsymbol{\theta} \in \mathcal{S}.$$
(3)
$$f_{\varepsilon}(\boldsymbol{\theta}_{k}) = g(\boldsymbol{\theta}_{k}|\boldsymbol{\theta}_{k})$$
(4)

Image: Image:

臣

Choose a surrogate function $g(\theta|\theta_k)$ for $f_{\varepsilon}(\theta)$ such that

$$f_{\varepsilon}(\boldsymbol{\theta}) \leq g(\boldsymbol{\theta}|\boldsymbol{\theta}_{k}), \text{ for all } \boldsymbol{\theta} \in \mathcal{S}.$$

$$f_{\varepsilon}(\boldsymbol{\theta}_{k}) = g(\boldsymbol{\theta}_{k}|\boldsymbol{\theta}_{k})$$

$$(3)$$

Ideal algorithm map $(\boldsymbol{\theta}_k \rightarrow \boldsymbol{\theta}_{k+1})$:

$$(\mathbf{W}_{k+1}, \mathbf{H}_{k+1}) = \arg\min_{(\mathbf{W}, \mathbf{H}) \in S} g((\mathbf{W}, \mathbf{H}) | (\mathbf{W}_k, \mathbf{H}_k))$$

SDM24

(5)

Choose a surrogate function $g(\theta|\theta_k)$ for $f_{\varepsilon}(\theta)$ such that

$$f_{\varepsilon}(\boldsymbol{\theta}) \leq g(\boldsymbol{\theta}|\boldsymbol{\theta}_{k}), \text{ for all } \boldsymbol{\theta} \in \mathcal{S}.$$

$$f_{\varepsilon}(\boldsymbol{\theta}_{k}) = g(\boldsymbol{\theta}_{k}|\boldsymbol{\theta}_{k})$$

$$(4)$$

Ideal algorithm map $(\boldsymbol{\theta}_k \rightarrow \boldsymbol{\theta}_{k+1})$:

$$(\mathbf{W}_{k+1}, \mathbf{H}_{k+1}) = \underset{(\mathbf{W}, \mathbf{H}) \in \mathcal{S}}{\arg\min g((\mathbf{W}, \mathbf{H}) | (\mathbf{W}_k, \mathbf{H}_k))}$$

From (3), (4), and (5),

$$f_{\varepsilon}(\boldsymbol{ heta}_{k+1}) \underset{(3)}{\leq} g(\boldsymbol{ heta}_{k+1} | \boldsymbol{ heta}_k) \underset{(5)}{\leq} g(\boldsymbol{ heta}_k | \boldsymbol{ heta}_k) \underset{(4)}{=} f_{\varepsilon}(\boldsymbol{ heta}_k).$$

э

(5)

Duc Toan Nguyen, Eric C. Chi

Towards Tuning-Free Min-Vol NMF

SDM24

3 / 33

E

SDM24

Surrogate function

Surrogate function: (Use first-order Taylor approximation)

$$g((\mathbf{W}, \mathbf{H})|(\mathbf{W}_k, \mathbf{H}_k)) = \sqrt{r_k} + \frac{1}{2\sqrt{r_k}}(\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^2 + \varepsilon - r_k) \\ + \lambda(\log \det(\mathbf{Q}_k) + \mathsf{Tr}(\mathbf{Q}_k^{-1}((\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta\mathbf{I}) - \mathbf{Q}_k)))$$

for

•
$$r_k = ||\mathbf{X} - \mathbf{W}_k \mathbf{H}_k||_{\mathsf{F}}^2 + \varepsilon$$

• $\mathbf{Q}_k = \mathbf{W}_k^{\mathsf{T}} \mathbf{W}_k + \delta \mathbf{I}.$

< (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) < (17) <

臣

Surrogate function

Surrogate function: (Use first-order Taylor approximation)

$$g((\mathbf{W}, \mathbf{H})|(\mathbf{W}_k, \mathbf{H}_k)) = \sqrt{r_k} + \frac{1}{2\sqrt{r_k}}(\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{\mathsf{F}}^2 + \varepsilon - r_k) \\ + \lambda(\log \det(\mathbf{Q}_k) + \mathsf{Tr}(\mathbf{Q}_k^{-1}((\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta\mathbf{I}) - \mathbf{Q}_k)))$$

for

•
$$r_k = ||\mathbf{X} - \mathbf{W}_k \mathbf{H}_k||_{\mathsf{F}}^2 + \varepsilon$$

• $\mathbf{Q}_k = \mathbf{W}_k^{\mathsf{T}} \mathbf{W}_k + \delta \mathbf{I}.$

Simplified algorithm map

$$(\mathbf{W}_{k+1},\mathbf{H}_{k+1}) = \arg\min_{(\mathbf{W},\mathbf{H})\in\mathcal{S}} g((\mathbf{W},\mathbf{H})|(\mathbf{W}_k,\mathbf{H}_k))$$

$$= \underset{(\mathbf{W},\mathbf{H})\in\mathcal{S}}{\arg\min}||\mathbf{X} - \mathbf{W}\mathbf{H}||_{\mathsf{F}}^{2} + \lambda_{k}\log\det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta\mathbf{I})(*)$$

for $\lambda_k = 2\sqrt{r_k}\lambda$

SDM24

Simplified algorithm map:

 $(\mathbf{W}_{k+1}, \mathbf{H}_{k+1}) = \underset{(\mathbf{W}, \mathbf{H}) \in \mathcal{S}}{\arg\min} ||\mathbf{X} - \mathbf{W}\mathbf{H}||_{\mathsf{F}}^{2} + \lambda_{k} \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I})(*)$

 \rightarrow Use the MinVol algorithm (Leplat et al. [6]) to solve (*).

э

Simplified algorithm map:

 $(\mathbf{W}_{k+1}, \mathbf{H}_{k+1}) = \underset{(\mathbf{W}, \mathbf{H}) \in \mathcal{S}}{\arg\min} ||\mathbf{X} - \mathbf{W}\mathbf{H}||_{\mathsf{F}}^{2} + \lambda_{k} \log \det(\mathbf{W}^{\mathsf{T}}\mathbf{W} + \delta \mathbf{I})(*)$

 \rightarrow Use the **MinVol** algorithm (Leplat et al. [6]) to solve (*).

Also,

- $r_k := ||\mathbf{X} \mathbf{W}_k \mathbf{H}_k||_F^2 + \varepsilon$ approximates noise level at iteration k [1]
- The update $\lambda_k = 2\sqrt{r_k}\lambda$ follows the noise level.

SDM24

Algorithm Square-Root Min-Vol NMF

Input:
$$\mathbf{X} \in \mathbb{R}^{m \times n}_+$$
, target rank $r, \lambda, \delta, \varepsilon$.
Output: $\mathbf{W} \in \mathbb{R}^{m \times r}_+$, $\mathbf{H} \in \mathbb{R}^{r \times n}_+$ in S
1: $(\mathbf{W}_1, \mathbf{H}_1) = \mathbf{SNPA}(\mathbf{X}, r)$
2: $\lambda_1 = \lambda$
3: for $k = 1, \dots$ do
4: $(\mathbf{W}_{k+1}, \mathbf{H}_{k+1}) = \mathbf{MinVol}(\mathbf{X}, r, [\mathbf{W}_k, \mathbf{H}_k, \lambda_k, \delta])$
5: $\lambda_{k+1} \leftarrow (2\sqrt{\|\mathbf{X} - \mathbf{W}_{k+1}\mathbf{H}_{k+1}\|_{\mathsf{F}}^2} + \varepsilon)\lambda$
6: end for

MinVol: minimum-volume algorithm (Leplat et al.) [6] **SNPA:** successive nonnegative projection algorithm [4]

Experiment Set-up

Set-up: (Similar to last experiment)

• True
$$\mathbf{W}^{\star} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

- True H*: A stochastic 4 × 500 matrix generated by Dirichlet distribution.
- True X* = W*H*
- Noise level $\sigma = 10^{-i}$ for $i \in \{1, \cdots, 14\}$
- Simulated matrix $\mathbf{X} = \mathbf{X}^{\star} + \sigma \mathbf{N}$ (**N** is random, $n_{ij} \in [0, 1]$)
- $\varepsilon = 10^{-8}$

Measurements:

- rel-RMSE(\mathbf{X}) = $\|\mathbf{X}^{\star} \hat{\mathbf{X}}\|_{\mathsf{F}} / \|\mathbf{X}^{\star}\|_{\mathsf{F}}$
- rel-RMSE(W) = $\|\mathbf{W}^{\star} \hat{\mathbf{W}}\|_{\mathsf{F}} / \|\mathbf{W}^{\star}\|_{\mathsf{F}}$

SDM24

Use the same list of initial λ's as last experiment

Figure: Smallest errors corresponding to different noise levels by two algorithms

Use the same list of initial λ's as last experiment

Figure: Smallest errors corresponding to different noise levels by two algorithms

Observation: For Square-Root Min-Vol, both errors are much smaller,and rel-RMSE(X) = 10^{-14} !Duc Toan Nguyen, Eric C. ChiTowards Tuning-Free Min-Vol NMFSDM2425/33

• For Square-Root Min-Vol, if use only $\lambda = 0.5$ for all noise levels

Figure: Smallest errors corresponding to different noise levels by two algorithms

• For Square-Root Min-Vol, if use only $\lambda = 0.5$ for all noise levels

Figure: Smallest errors corresponding to different noise levels by two algorithms

26 / 33

 Observation: For Square-root Min-Vol, rel-RMSE(W) is much

 improved to 10⁻⁶!

 Duc Toan Nguyen, Eric C. Chi

Towards Tuning-Free Min-Vol NMF
SDM24

Proposition 3.2. (Convergence Theory of Square-Root Min-Vol NMF) The limit points of the iterate sequence produced by **Square-Root Min-Vol NMF** are first-order stationary points of the problem (2). Proposition 3.2. (Convergence Theory of Square-Root Min-Vol NMF) The limit points of the iterate sequence produced by **Square-Root Min-Vol NMF** are first-order stationary points of the problem (2).

Process:

• Show that all limits points of **Square-Root Min-Vol NMF** algorithm are fixed points of the algorithm map based on *Meyer's Monotone Convergence Theorem*.

Proposition 3.2. (Convergence Theory of Square-Root Min-Vol NMF)

The limit points of the iterate sequence produced by **Square-Root Min-Vol NMF** are first-order stationary points of the problem (2).

Process:

- Show that all limits points of **Square-Root Min-Vol NMF** algorithm are fixed points of the algorithm map based on *Meyer's Monotone Convergence Theorem*.
- Show that all fixed points of the algorithm map are first-order stationary points of the optimization problem (2).

Background & Motivation

Nonnegative Matrix Factorization (NMF) and its application Minimum-Volume Rank-Deficient NMF

Experiment with tuning parameter Experiment and Observations

S Majorization-Minimization (MM) method

Modified problem MM idea Square-Root Min-Vol NMF algorithm Convergence Theory

4 Conclusions

6 Acknowledgement

Conclusions:

- The efficiency of \mathbf{MinVol} algorithm depends on the initial λ choice
- The MinVol algorithm can be improved by the Square-Root Min-Vol NMF

Conclusions:

- The efficiency of **MinVol** algorithm depends on the initial λ choice
- The MinVol algorithm can be improved by the Square-Root Min-Vol NMF

Open questions:

- Under what conditions is the square-root min-vol NMF provably guaranteed to be tuning-free?
- Can we design faster algorithms for solving the square-root min-vol NMF problem?

SDM24

Background & Motivation

Nonnegative Matrix Factorization (NMF) and its application Minimum-Volume Rank-Deficient NMF

Experiment with tuning parameter Experiment and Observations

S Majorization-Minimization (MM) method

Modified problem MM idea Square-Root Min-Vol NMF algorithm Convergence Theory

Occurrent Conclusions

6 Acknowledgement

Acknowledgement:

- This work was conducted as part of the 2023 REU STAT-DATASCI program hosted by the Department of Statistics at Rice University.
- This work was also partially funded by a grant from the National Institute of General Medical Sciences (R01GM135928: EC).

Reference

- Alexandre Belloni, Victor Chernozhukov, and Lie Wang. Square-root lasso: pivotal recovery of sparse signals via conic programming. Biometrika, 98(4):791–806, 2011.
- Xiao Fu, Kejun Huang, and Nicholas D. Sidiropoulos. On identifiability of nonnegative matrix factorization. IEEE Signal Processing Letters, 25(3):328–332, 2018.
- Xiao Fu, Kejun Huang, Nicholas D Sidiropoulos, and Wing-Kin Ma. Nonnegative matrix factorization for signal and data analytics: Identifiability, algorithms, and applications. *IEEE Signal Process. Mag.*, 36(2):59–80, 2019.

Nicolas Gillis.

Successive nonnegative projection algorithm for robust nonnegative blind source separation.

SIAM Journal on Imaging Sciences, 7(2):1420-1450, 2014.

Duc Toan Nguyen, Eric C. Chi

Towards Tuning-Free Min-Vol NMF

THANK YOU!

Image: A math a math

Duc Toan Nguyen, Eric C. Chi

Towards Tuning-Free Min-Vol NMF

≣ ▶ ∢ ≣ ▶ SDM24

33 / 33

臣