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Nonnegative Matrix Factorization

Nonnegative matrix

If all entries of a matrix X ∈ Rm×n are nonnegative, we call matrix X is
nonnegative and denote X ≥ 0.

Nonnegative Matrix Factorization (NMF)

Given a nonnegative matrix X ∈ Rm×n and a target rank r that
0 < r ≪ m. We want to find a matrix factorization model

X ≈ WH,

where W ∈ Rm×r and H ∈ Rr×n are nonnegative.
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NMF Applications

Applications: Hyperspectral unmixing (HU), topic modeling,
representation learning.

Face Representation Learning:

Figure: NMF for Representation Learning [3, 5]. In matrix X, each column
represents a face image, while in matrix W, each column represents a facial
feature (learned basis ).

Duc Toan Nguyen, Eric C. Chi Towards Tuning-Free Min-Vol NMF SDM24 5 / 33



NMF Applications

Applications: Hyperspectral unmixing (HU), topic modeling,
representation learning.
Face Representation Learning:

Figure: NMF for Representation Learning [3, 5]. In matrix X, each column
represents a face image, while in matrix W, each column represents a facial
feature (learned basis ).

Duc Toan Nguyen, Eric C. Chi Towards Tuning-Free Min-Vol NMF SDM24 5 / 33



Minimum-Volume Rank-Deficient NMF

In [6], Leplat et al. proposed the optimization problem for NMF

MinVol NMF problem

min
W,H

∥X−WH∥2F + λ log det(WTW + δI)

s.t. (W,H) ∈ S

Notation:

• S = {θθθ = (W,H)|W,H ≥ 0 and 1TH(:, j) ≤ 1,∀j} (Constraint set)
• H(:, j) is the jth column of matrix H

Note: The minimum volume (vol(W) = log det(WTW + δI)) condition is
necessary criteria for a “unique” solution, or the identifiability of NMF
(Craig’s belief [2]).
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Motivation

In the paper [6], Leplat et al. briefly choose the tuning parameter λ as

λ = λ̃
∥X−W0H0∥2F

log det(WT
0W0 + δI)

such that

• (W0,H0) is the initialization for (W,H)

• λ̃ is between 1 and 10−310−310−3 depends on the noise level

Question: What is the best λ̃ for each noise level?
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Experiment Set-up

Set-up:

• True W⋆ =


1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1


• True H⋆: A stochastic 4× 500 matrix generated by Dirichlet
distribution.

• True X⋆ = W⋆H⋆

• Noise level σ = 10−i for i ∈ {1, · · · , 14}
• Simulated matrix X = X⋆ + σN (N is random, nij ∈ [0, 1])

Measurements:

• rel-RMSE(X) = ∥X⋆ − X̂∥F/∥X⋆∥F
• rel-RMSE(W) = ∥W⋆ − Ŵ∥F/∥W⋆∥F
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Experiment process

For each noise level σ

1 Run algorithm with multiple λ̃ between 1.5 and 10−11

2 Choose the best results:
• smallest rel-RMSE(X)
• smallest rel-RMSE(W)
• best λ̃ for rel-RMSE(X) (Best λ̃X )
• best λ̃ for rel-RMSE(W) (Best λ̃W )
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Results

(a) Best λ̃ (b) Smallest errors

Figure: Best results corresponding to different noise levels

Observation: Even with the best λ̃, the errors cannot get under 10−810−810−8.
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Motivation

Fact: The machine precision (computer numerical noise) ≈ 10−1410−1410−14

Question: Is there a way to improve the MinVol?
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Modified problem

Original problem:

min
W,H

∥X−WH∥2F + λ log det(WTW + δI)

s.t. (W,H) ∈ S

New optimization problem (inspired by Square-Root Lasso)

min
W,H

f (W,H) :=
√
∥X−WH∥2F + λ log det(WTW + δI)

s.t. (W,H) ∈ S
(1)

Modified problem (”smoothen” square-root term)

min
W,H

fε(W,H) :=
√
∥X−WH∥2F + ε+ λ log det(WTW + δI)

s.t. (W,H) ∈ S
(2)
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MM algorithm idea

Choose a surrogate function g(θθθ|θθθk) for fε(θθθ) such that

fε(θθθ) ≤ g(θθθ|θθθk), for all θθθ ∈ S. (3)

fε(θθθk) = g(θθθk |θθθk) (4)

Ideal algorithm map (θθθk → θθθk+1):

(Wk+1,Hk+1) = argmin
(W,H)∈S

g((W,H)|(Wk ,Hk)) (5)

From (3), (4), and (5),

fε(θθθk+1) ≤
(3)

g(θθθk+1|θθθk) ≤
(5)

g(θθθk |θθθk) =
(4)

fε(θθθk).
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MM idea
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MM idea
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Surrogate function

Surrogate function: (Use first-order Taylor approximation)

g((W,H)|(Wk ,Hk)) =
√
rk +

1

2
√
rk
(∥X−WH∥2F + ε− rk)

+ λ(log det(Qk) + Tr(Q−1
k ((WTW + δI)−Qk)))

for
• rk = ||X−WkHk ||2F + ε
• Qk = WT

kWk + δI.

Simplified algorithm map

(Wk+1,Hk+1) = argmin
(W,H)∈S

g((W,H)|(Wk ,Hk))

= argmin
(W,H)∈S

||X−WH||2F + λk log det(W
TW + δI)(∗)

for λk = 2
√
rkλ

Duc Toan Nguyen, Eric C. Chi Towards Tuning-Free Min-Vol NMF SDM24 21 / 33



Surrogate function

Surrogate function: (Use first-order Taylor approximation)

g((W,H)|(Wk ,Hk)) =
√
rk +

1

2
√
rk
(∥X−WH∥2F + ε− rk)

+ λ(log det(Qk) + Tr(Q−1
k ((WTW + δI)−Qk)))

for
• rk = ||X−WkHk ||2F + ε
• Qk = WT

kWk + δI.

Simplified algorithm map

(Wk+1,Hk+1) = argmin
(W,H)∈S

g((W,H)|(Wk ,Hk))

= argmin
(W,H)∈S

||X−WH||2F + λk log det(W
TW + δI)(∗)

for λk = 2
√
rkλ

Duc Toan Nguyen, Eric C. Chi Towards Tuning-Free Min-Vol NMF SDM24 21 / 33



Note

Simplified algorithm map:

(Wk+1,Hk+1) = argmin
(W,H)∈S

||X−WH||2F + λk log det(W
TW + δI)(∗)

→ Use the MinVol algorithm (Leplat et al. [6]) to solve (∗).

Also,

• rk := ||X−WkHk ||2F + ε approximates noise level at iteration k [1]

• The update λk = 2
√
rkλ follows the noise level.
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Square-Root Min-Vol NMF

Algorithm Square-Root Min-Vol NMF

Input: X ∈ Rm×n
+ , target rank r , λ, δ, ε.

Output: W ∈ Rm×r
+ ,H ∈ Rr×n

+ in S
1: (W1,H1) = SNPA(X,r)
2: λ1 = λ
3: for k = 1, . . . do
4: (Wk+1,Hk+1) = MinVol(X,r ,[Wk ,Hk ,λk ,δ])

5: λk+1 ← (2
√
∥X−Wk+1Hk+1∥2F + ε)λ

6: end for

MinVol: minimum-volume algorithm (Leplat et al.) [6]
SNPA: successive nonnegative projection algorithm [4]
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Experiment Set-up

Set-up: (Similar to last experiment)

• True W⋆ =


1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1


• True H⋆: A stochastic 4× 500 matrix generated by Dirichlet
distribution.

• True X⋆ = W⋆H⋆

• Noise level σ = 10−i for i ∈ {1, · · · , 14}
• Simulated matrix X = X⋆ + σN (N is random, nij ∈ [0, 1])

• ε = 10−8

Measurements:

• rel-RMSE(X) = ∥X⋆ − X̂∥F/∥X⋆∥F
• rel-RMSE(W) = ∥W⋆ − Ŵ∥F/∥W⋆∥F
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Result 1

• Use the same list of initial λ’s as last experiment

(a) Errors by MinVol (b) Errors by Square-Root Min-Vol

Figure: Smallest errors corresponding to different noise levels by two algorithms

Observation: For Square-Root Min-Vol, both errors are much smaller,
and rel-RMSE(X) = 10−1410−1410−14 !
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Result 2

• For Square-Root Min-Vol, if use only λ = 0.5 for all noise levels

(a) Errors by MinVol (b) Errors by Square-Root Min-Vol

Figure: Smallest errors corresponding to different noise levels by two algorithms

Observation: For Square-root Min-Vol, rel-RMSE(W) is much
improved to 10−610−610−6!
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Convergence Theory

Proposition 3.2. (Convergence Theory of Square-Root Min-Vol NMF)

The limit points of the iterate sequence produced by Square-Root
Min-Vol NMF are first-order stationary points of the problem (2).

Process:

1 Show that all limits points of Square-Root Min-Vol NMF algorithm
are fixed points of the algorithm map based on Meyer’s Monotone
Convergence Theorem.

2 Show that all fixed points of the algorithm map are first-order
stationary points of the optimization problem (2).
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Conclusions

Conclusions:

• The efficiency of MinVol algorithm depends on the initial λ choice

• The MinVol algorithm can be improved by the Square-Root
Min-Vol NMF

Open questions:

• Under what conditions is the square-root min-vol NMF provably
guaranteed to be tuning-free?

• Can we design faster algorithms for solving the square-root min-vol
NMF problem?
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Ending

THANK YOU!
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